首页> 外文OA文献 >Adaptive Adjustment of Noise Covariance in Kalman Filter for Dynamic State Estimation
【2h】

Adaptive Adjustment of Noise Covariance in Kalman Filter for Dynamic State Estimation

机译:动态卡尔曼滤波器噪声协方差的自适应调整   状态估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate estimation of the dynamic states of a synchronous machine (e.g.,rotor s angle and speed) is essential in monitoring and controlling transientstability of a power system. It is well known that the covariance matrixes ofprocess noise (Q) and measurement noise (R) have a significant impact on theKalman filter s performance in estimating dynamic states. The conventionalad-hoc approaches for estimating the covariance matrixes are not adequate inachieving the best filtering performance. To address this problem, this paperproposes an adaptive filtering approach to adaptively estimate Q and R based oninnovation and residual to improve the dynamic state estimation accuracy of theextended Kalman filter (EKF). It is shown through the simulation on thetwo-area model that the proposed estimation method is more robust against theinitial errors in Q and R than the conventional method in estimating thedynamic states of a synchronous machine.
机译:准确估算同步电机的动态状态(例如转子的角度和速度)对于监视和控制电力系统的暂态稳定性至关重要。众所周知,过程噪声(Q)和测量噪声(R)的协方差矩阵对卡尔曼滤波器在估计动态状态时的性能有重大影响。用于估计协方差矩阵的常规即席方法不足以实现最佳滤波性能。为了解决这个问题,本文提出了一种自适应滤波方法,可以基于创新和残差来自适应地估计Q和R,以提高扩展卡尔曼滤波器(EKF)的动态状态估计精度。通过对两区域模型的仿真表明,所提出的估计方法在估计Q和R的初始误差方面比常规方法在估计同步电机的动态状态方面更为稳健。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号